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Abstract
We demonstrate that the Ito and the Stratonovich stochastic calculus lead to
identical results when applied to the stochastic dynamics study of magnetic
systems consisting of dipoles with the constant magnitude, despite the
multiplicative noise appearing in the corresponding Langevin equations. The
immediate consequence of this statement is that any numerical method used for
the solution of these equations will lead to the physically correct results.

Study of thermally activated processes in magnetic systems is currently an extremely important
research topic not only from the fundamental point of view (as it always was [1]), but also due
to the miniaturization of magnetic devices (such as heads and sensors) [2], increasing density
of magnetic storage [3] and development of novel magnetic technologies like MRAM [4]. In
all these cases the decreasing size of magnetic elements makes thermally activated processes
extremely important because the activation barrier decreases with the volume of a magnetic
unit whose magnetization should be reversed, thus setting fundamental limits on the smallest
size of reliable magnetic devices.

The most straightforward way to study the system dynamics taking into account thermal
fluctuations is by the solution of the corresponding stochastic (Langevin) equations. In the
overwhelming majority of models developed for the description of magnetic systems, the
magnitude of magnetic moments is assumed to be constant. This is the case, e.g., for the
classical Heisenberg model, in models describing RKKY spin glasses and fine-magnetic-
particle systems [1] and in standard micromagnetic formalism [5] commonly used to analyse the
behaviour of ferromagnetic materials (the last example represents probably the most relevant
research area from the practical point of view).
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In all these cases magnetic moments µi of the system are allowed only to rotate and thus
their dynamics can be described by the stochastic Landau–Lifshitz–Gilbert equation [6]

dµi

dt
= −γ [µi × (Hdet

i + Hfl
i )] − γ

λi

µi

[µi × [µi × (Hdet
i + Hfl

i )]], (1)

where γ (>0) denotes the precession constant and λ the reduced damping rate. Standard
magnetic interactions (with the external field, magnetocrystalline anisotropy, exchange and
dipolar fields) are included in the deterministic effective field Hdet

i acting on the i—the
magnetic moment. Thermal fluctuations are taken into account via the so-called ‘fluctuation
field’ Hfl

i (t) whose Cartesian components have the well known statistical properties [6]

〈H fl
α,i〉 = 0, 〈H fl

α,iH
fl
β,j 〉 = 2Dδij δαβ (2)

where i, j are the moment indices, α, β = x, y, z and the noise power D is proportional to the
system temperature T [6, 7].

It is because of this fluctuation field that equation (1) cannot be treated as a ‘usual’
differential equation, because the integral of the random field Hfl

i (t) represents a Wiener
process and hence is not differentiable, with the result that the derivative on the left-hand
side of (1) does not exist. Equation (1) should be considered rather as an informal way of
introducing the so-called stochastic integral [8] which can be interpreted self-consistently in
framework of the corresponding mathematical formalism.

Such integrals have a very non-trivial feature: their value depends, generally speaking, on
the positions of intermediate points chosen for the evaluation of the integrand inside the small
intervals used to take the limit of the stochastic partial sums (analogues to the Darby sums
by the construction of the standard Riemann integrals). The two most common choices are
to take these points (i) at the beginning of the intervals, leading to the Ito stochastic integral
and (ii) in the middle of the intervals, which leads to the Stratonovich stochastic calculus. It is
well known [9] that if the noise in the stochastic equation is multiplicative—i.e., the random
term is multiplied by some function of the system variables—then the Ito and Stratonovich
interpretations of this equation lead to different solutions (a simple, but impressive example
is given in [9]). It was also shown that in this case the Stratonovich interpretation provides
physically correct results, recovering, e.g., some important properties of physical random
processes obtained using more general methods [9].

The noise in the Langevin equation (1) is obviously multiplicative, because due to the
vector products the projections of the random field Hfl

i are multiplied by the magnetic moment
projections. This fact was noted already in the pioneering paper of Brown [6] who suggested
that the Stratonovich interpretation of the this equation should be used to obtain physically
consistent results. For quite a long time afterwards, the question was abandoned because
analytical solutions of (1) are available only in a few simplest cases and computers were not
powerful enough to enable numerical studies of really interesting magnetic systems.

During the last decade, however, corresponding numerical simulations became available
and many research groups have performed studies of remagnetization processes in various
systems using the Langevin formalism based on the solution of equation (1)—see [7, 10–14]
etc. For such simulations, the question concerning the choice of the stochastic calculus (Ito
or Stratonovich) is of primary importance, because different numerical methods converge
to different kinds of stochastic integral: the Euler scheme and the simple implicit methods
obviously converge to the Ito solution, the Heun and Milstein schemes are known to converge
to the Stratonovich integral [15] and the Runge–Kutta schemes can converge to anything
(including the cases in between) depending on the coefficients used there [16]. Most
authors [7,11,12] and commercial micromagnetic packages [17,18] use the Heun and Runge–
Kutta methods converging to the Stratonovich solution (simply because they are far more stable
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than the Euler method), but several groups employ the Ito-converging Euler [10,13] and implicit
schemes [14]. The last two cited papers were seriously criticized in the recent paper [7] where
it has been claimed once again that only the Stratonovich interpretation ensures a physically
correct solution of the basic equation (1) and that thus results obtained with methods converging
to the Ito integrals should be discarded as incorrect.

In this letter we prove analytically—and support our proof with numerical experiments—
that if the time evolution of the system is governed by the stochastic equation (1), then there
is no difference between the system behaviours for Ito and Stratonovich interpretations of this
equation.

First of all, we note that the fluctuation field in the dissipation term on the right-hand side
of this equation can be omitted; although the particular realizations of the system trajectories
will be different then, the average system properties (which are the only ones of practical
interest) remain the same if the noise power D is rescaled correspondingly—see, e.g., [7,19].
Thus we can restrict ourselves to the study of a simpler equation

dmi

dτ
= −[mi × (hdet

i + hfl
i )] − λi[mi × [mi × hdet

i ]], (3)

where we have introduced the unit magnetization vector m = µ/µ, the reduced field
h = H/MS (MS being the saturation magnetization of the material) and absorbed all constants
except λ into the reduced time τ = tγMS .

The most straightforward way to show why the multiplicative noise in (3) does not lead to
any difference between the Ito and Stratonovich interpretations of this equation is to analyse
the additional drift term appearing as a result of the transition between the Ito and Stratonovich
forms. That is, it is well known [8] that if one adds to the system of stochastic ODEs

dxi

dt
= Ai(x, t) +

∑
k

Bikξk (4)

the deterministic drift term D
∑

jk Bjk(∂Bik/∂xj ), then the Ito solution of this new system

dxi

dt
= Ai(x, t) + D

∑
jk

Bjk ∂Bik/∂xj +
∑
k

Bikξk (5)

is equivalent to the Stratonovich solution of the initial system (4). Comparing the standard
form (4) with the LLG system (3) which we are interested in, we can immediately see that in
our case the matrix B has the form Bik = − ∑

j εijkmj , so the drift term D
∑

jk Bjk ∂Bik/∂mj

reduces to

dmi

dτ
= −2Dmi . (6)

Hence this drift contributes to the field component along the magnetic moment mi only,
thus trying to change the magnitude of this moment which is forbidden by the model. For this
reason this term must be discarded, which means that for stochastic dynamics of models with
rigid dipoles (dipoles with constant magnitudes) there is no difference between the Ito and
Stratonovich solutions of corresponding stochastic ODEs.

The mathematical reason for the multiplicative noise present in (3) not leading to a
difference between its Ito and Stratonovich interpretations is that Cartesian coordinates of
magnetic moments are not independent variables: due to the condition that the magnitude of
each dipole moment should be constant, they are subject to the restriction m2

i,x +m2
i,y +m2

i,z = 1.
The independent variables in this case are spherical coordinates of the magnetic moment unit
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vector (θi, φi). After the transition to these coordinates, the stochastic part of the system (3)
which we have to analyse reads [6, 19]

dθ

dτ
= hfl

φ

dφ

dτ
= − 1

sin θ
hfl
θ ,

(7)

(where we have omitted the moment index i for the sake of simplicity), so the matrix B
responsible for the drift mentioned above is

B =
(
Bθθ Bθφ

Bφθ Bφφ

)
=

(
0 1

−1/ sin θ 0

)
(8)

and it is straightforward to verify that this drift is exactly zero: D
∑

jk Bjk(∂Bik/∂xj ) ≡ 0
(here i, j, k = 1, 2 and x1 = θ , x2 = φ). Hence we arrive at the same result that Stratonovich
and Ito stochastic integrals are equivalent in this case.

At this point we would like to mention that the opposite statement was made in [7],
where the authors claimed to show that Ito and Stratonovich stochastic calculus are not
equivalent for the micromagnetic calculation. The authors of [7] have used the formalism
of the Fokker–Planck equation (FPE) which describes the temporal and spatial evolution of
the probability distribution of the magnetization orientation P(m, t). They have demonstrated
that an additional drift term ∂(mP)/∂m arises in the FPE derived from the Ito interpretation
of the Langevin equation when compared with the Stratonovich one (see p 14 940 in [7]).
Unfortunately, Garcia-Palacios and Lazaro [7] did not take into account exactly the point
which we have emphasized in our study: that Cartesian coordinates of magnetic moment are
not independent variables. For this reason one cannot use the FPE written in these coordinates
to compare the Ito and Stratonovich forms without introducing the restriction |m| = 1 explicitly.
In particular, the additional drift term ∂(mP)/∂m which appears in the Ito interpretation of the
FPE should be excluded from this equation because it leads to the drift of the probability density
along the magnetization vector: this can be clearly seen after transition to spherical coordinates
of m: (mx,my,mz) → (m, θ, φ), where this drift term reduces to ∂[mP(m, θ, φ)]/∂m. This
means that the corresponding term tries to change the moment magnitude, which is forbidden
by the model. We would also like to add that this mistake does not influence the interesting
physical results obtained in the paper [7], which contains a comprehensive study of the single-
particle thermodynamics and is, in general, of really high scientific quality.

To support our conclusion, we have performed numerical experiments simulating
equilibrium (energy distribution density) and non-equilibrium (magnetic relaxation) properties
of a disordered system of magnetic dipoles. We have solved the stochastic LLG equation (1)
using methods converging either to its Ito (Euler scheme) or to its Stratonovich (drift-modified
Euler and Heun schemes) solution. We note in passing that for numerical solution of (3)
Cartesian coordinates are often preferred, because no instabilities like those observed in
spherical coordinates near the polar axis (θi ≈ 0 or θi ≈ π ) can occur. During such simulations
one has to normalize the moment vector mi after each new integration step (and also by
evaluating the derivatives at the intermediate points, if necessary) in order to conserve the
moment magnitude.

As the first example we have computed the equilibrium energy distribution for a single
magnetic particle with the uniaxial anisotropy energyEan = −KV cos2 ψ only (hereV denotes
the particle volume, K its anisotropy constant and ψ is the angle between the particle moment
and its anisotropy axis). For this purpose we have simulated the motion of a single magnetic
moment without the external field solving the stochastic equation (1) (with the relatively small
damping λ = 0.1 and a moderate temperature kT /KV = 1.0) using different numerical
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Figure 1. The equilibrium energy densities for a single-particle magnetic moment (with the uniaxial
anisotropy) obtained by solving the basic equation (1) with different numerical methods converging
to Ito (a) or Stratonovich (b), (c) solutions. The equivalence of the two approaches can be seen.

methods mentioned above. After the system reached the thermodynamic equilibrium (which
may be verified, e.g., by checking that the energy does not exhibit any systematic change), we
started to record the particle energy at each integration step. After a sufficiently long simulation
time the distribution of these energy values must coincide (within the statistical errors) with
the corresponding equilibrium Boltzmann distribution, which for such a simple system can be
easily calculated analytically:

p(E) ∝ exp(−ε/T )
1√−ε

(9)
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Figure 2. Magnetic relaxation curves of a system of non-interacting (a) and interacting (b) particles
obtained using the same methods as in figure 1. Results obtained from the Ito and from the
Stratonovich stochastic calculus coincide.

where the reduced energy ε = E/2KV = −0.5 cos2 θ may vary in the interval [−0.5; 0]. The
inverse square root in (9) comes from the density of states in spherical coordinates.

Energy histograms obtained from the simulations employing different integration schemes
are shown in figure 1, where numerical results are compared with the analytical distribution (9)
displayed as the thin solid curve; the region near the zero energy value is not shown because
of the inverse-square-root singularity in (9). It can be clearly seen that all three histograms—
obtained with the Euler method (Ito solution), the Euler method augmented with the drift term
from (5) (Stratonovich solution) and the Heun scheme (also Stratonovich)—coincide perfectly
with the correct analytical result.

The second example deals with magnetic relaxation of a disordered fine-particle system.
To study such a relaxation, we have chosen a disordered system of identical particles with
the same uniaxial anisotropy Ean = −KV cos2 ψ and aligned anisotropy axis. For such a
system without dipolar interaction, all particles have the same energy barrier *E = KV

separating two energy minima along the two opposite direction of the anisotropy axes. Thus
magnetic relaxation from the state where all magnetic moments are aligned along one and the
same direction of the anisotropy axes should follow the exponential law m(t) ∝ exp(−τ/τc),
where the relaxation time τc depends exponentially on the relation *E/kT . Corresponding
simulation results for particles with the reduced anisotropy constantβ = 2K/M2

S = 2.0 and the
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reduced damping λ = 0.1 at the temperature kT /KV = 0.5 are presented in figure 2(a). Here
the m(t) relaxation curves obtained using the same three numerical methods as listed above are
shown. Again, perfect coincidence (within the statistical errors) of the Ito and Stratonovich
solutions can be seen. The inset in figure 2(a) shows the same results in semilogarithmic
coordinates to demonstrate the exponential behaviour of the magnetization expected for a
non-interacting system.

Results for the interacting system (particle volume fraction c = 0.08, initial metastable
state prepared by quasistatic energy minimization starting from the aligned state) are shown in
figure 2(b). In this case magnetodipolar interaction between the particles leads to a distribution
of the corresponding energy barriers, thus resulting in non-exponential relaxation. However,
the relaxation curves obtained with different numerical methods coincide again, demonstrating
the equivalence of the Ito and the Stratonovich stochastic calculus for this system also.

In conclusion, we have proved analytically and shown by numerical experiments that
for magnetic models where the magnitude of the magnetic moment at each site is constant,
the Ito and the Stratonovich stochastic calculus lead to the same physical results despite the
noise in the corresponding stochastic equation being multiplicative. This means that all results
obtained previously using different numerical schemes are correct. A more important point is
that by developing new numerical methods for solving stochastic equations for such models,
one does not need to prove that these methods converge to the Stratonovich solution; the only
consideration should be the efficiency and accuracy of these new methods.
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